

checked by 17 2/27/12

CETIFICATION

SDG No:

FA40754

Laboratory:

Accutest, Massachusetts

Site:

BMSMC, Humacao, PR

Matrix:

Soil

SUMMARY:

Soil/Aqueous samples (Table 1) were collected on the BMSMC facility, Humacao, PR. Samples were collected January 25 2017 and were analyzed in Accutest Laboratory of Orlando, Florida that reported the data under SDG No.: FA40754. Results were validated using the following quality control criteria of the methods employed (MADEP VPH and MAPED EPH, Massachusets Department of Environmental Protection, 2004) and the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
FA40754-1	FTFSS-1	Soil	Volatiles TPHC Ranges Extractable TPHC Ranges
FA40754-2	FTFSS-2	Soil	Volatiles TPHC Ranges Extractable TPHC Ranges
FA40754-3	FTFSS-3	Soil	Volatiles TPHC Ranges Extractable TPHC Ranges
FA40754-4	B5SS-1	Soil	Volatiles TPHC Ranges Extractable TPHC Ranges
FA40754-5	B5SS-2	Soil	Volatiles TPHC Ranges Extractable TPHC Ranges
FA40754-6	EB-012517	AQ - Equipment Blank	Extractable TPHC Ranges
FA40754-7	FB-012517	AQ - Field Blank Soil	Volatiles TPHC Ranges Extractable TPHC Ranges

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

February 16, 2017

Rafael Influte Méndez LIC. # 1888

1617177

Report of Analysis

Page 1 of 1

Client Sample ID:	FTFSS-1
Lab Sample ID:	FA40754-1
Matrix:	SO - Soil

Method: Project:

MADEP VPH REV 1.1

Date Sampled: 01/25/17 Date Received: 01/27/17 Percent Solids: 93.3

BMSMC, Humacao, PR

File ID DF Analyzed Ву Prep Date Prep Batch **Analytical Batch** UV077759.D 1 01/31/17 AJC n/a n/a **GUV4134**

Run #1 Run #2

Run #2

Initial Weight Run #1 4.76 g

Final Volume 5.1 ml

Methanol Aliquot

100 ul

MADEP VPH List

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.)	ND ND ND	6100 6100 6100	2100 2100 2100	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
460-00-4 460-00-4	BFB BFB	102% 97%	70-130% 70-130%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID:	FTFSS-1
Lab Sample ID:	FA40754
Matrix:	SO - Soil

File ID

NN017358.D

754-1 SO - Soil

Method: Project:

MADEP EPH REV 1.1 SW846 3546

BMSMC, Humacao, PR

Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: 93.3

DF Analyzed By Prep Date Prep Batch **Analytical Batch** 1 02/08/17 MG 02/01/17 OP63645 **GNN877**

Initial Weight Final Volume Run #1 19.7 g 2.0 ml

Run #2

Run #1

Run #2

MAEPH List

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics	ND ND ND	11000 11000 11000	8200 5400 5400	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
3386-33-2 580-13-2 84-15-1 321-60-8	1-Chlorooctadecane 2-Bromonaphthalene o-Terphenyl 2-Fluorobiphenyl	61% 78% 65% 87%	40-140% 40-140% 40-140% 40-140%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID:

FTFSS-2 FA40754-2

C5- C8 Aliphatics (Unadj.)

Matrix: Method: SO - Soil

Project:

MADEP VPH REV 1.1 BMSMC, Humacao, PR

DF

1

Date Sampled: Date Received:

n/a

Q

01/25/17 01/27/17

GUV4134

Percent Solids:

Prep Date Prep Batch **Analytical Batch**

Run #1 Run #2

Run #1

Run #2

Initial Weight 4.87 g

UV077760.D

File ID

Final Volume 5.1 ml

Methanol Aliquot

n/a

MDL

100 ul

RL

By

AIC

MADEP VPH List

CAS No. Compound

Result ND C9- C12 Aliphatics (Unadj.) ND C9- C10 Aromatics (Unadj.)

ND

Analyzed

01/31/17

6500 6500 6500

Run#2

2300 ug/kg 2300 2300

ug/kg ug/kg

Units

CAS No. Surrogate Recoveries

98%

Run#1

70-130%

Limits

460-00-4 **BFB** 460-00-4 **BFB**

93%

70-130%

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

By

MG

Page 1 of 1

Client Sample ID: Lab Sample ID:

FTFSS-2 FA40754-2

Matrix: Method: SO - Soil

MADEP EPH REV 1.1 SW846 3546

Analyzed

02/10/17

Date Sampled: Date Received:

01/25/17 01/27/17

Percent Solids: 88.9

Project:

BMSMC, Humacao, PR

DF

1

Prep Batch Analytical Batch

Run #1 Run #2

NN017405.D

Prep Date 02/01/17

OP63645

GNN879

Run #1 Run #2 Initial Weight Final Volume

20.1 g

File ID

2.0 ml

MAEPH List

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics	10200 ND 19100	11000 11000 11000	8400 5600 5600	ug/kg ug/kg ug/kg	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
3386-33-2 580-13-2 84-15-1 321-60-8	1-Chlorooctadecane 2-Bromonaphthalene o-Terphenyl 2-Fluorobiphenyl	50% 67% 52% 71%	40-140% 40-140% 40-140% 40-140%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: FTFSS-3 Lab Sample ID: FA40754-3

Matrix: Method:

Project:

SO - Soil

MADEP VPH REV 1.1 BMSMC, Humacao, PR Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: 94.9

File ID DF Ву Analyzed Prep Date Prep Batch Analytical Batch Run #1 UV077768.D 1 02/01/17 AJC n/a n/a **GUV4135** Run #2

Initial Weight Final Volume Methanol Aliquot Run #1 3.07 g 5.1 ml 100 ul Run #2

MADEP VPH List

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.)	ND ND ND	9000 9000 9000	3200 3200 3200	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
460-00-4 460-00-4	BFB BFB	94% 89%	70-130% 70-130%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: FTFSS-3 Lab Sample ID:

FA40754-3

Matrix:

SO - Soil

MADEP EPH REV 1.1 SW846 3546

Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: 94.9

Method: Project:

BMSMC, Humacao, PR

Run #1

File ID NN017361.D DF Analyzed 1 02/08/17

By Prep Date MG 02/01/17

Prep Batch OP63645

Analytical Batch **GNN877**

Run #2

Initial Weight

2-Bromonaphthalene

2-Fluorobiphenyl

o-Terphenyl

Final Volume

20.2 g

Run #1 Run #2 2.0 ml

MAEPH List

580-13-2

84-15-1

321-60-8

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics	13600 ND ND	10000 10000 10000	7800 5200 5200	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
3386-33-2	1-Chlorooctadecane	67%		40-140%		

80% 40-140% 68% 40-140% 86% 40-140%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID:

B5SS-1 FA40754-4

SO - Soil MADEP VPH REV 1.1 BMSMC, Humacao, PR Date Sampled: Date Received:

01/25/17 01/27/17

Percent Solids:

93.5

Run #1 Run #2

Matrix:

Method:

Project:

File ID DF UV077769.D 1

Analyzed 02/01/17

By AJC Prep Date n/a

Prep Batch n/a

Q

Analytical Batch GUV4135

Run #1 5.03 g Run #2

Final Volume 5.1 ml

Methanol Aliquot 100 ul

MADEP VPH List

CAS No.

Compound

Initial Weight

Result ND

RL **MDL** 5800 2000

Units

ug/kg ug/kg

C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.)

C5- C8 Aliphatics (Unadj.)

ND ND 5800 2000 5800 2000

ug/kg

CAS No. Surrogate Recoveries

Run#1

Run#2

Limits

460-00-4 **BFB** 460-00-4 **BFB** 99% 94% 70-130% 70-130%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: B5SS-1 Lab Sample ID:

FA40754-4

SO - Soil MADEP EPH REV 1.1 SW846 3546 Date Sampled: 01/25/17 Date Received: 01/27/17

Q

Method: Project:

Matrix:

BMSMC, Humacao, PR

Percent Solids: 93.5

Run #1 Run #2 DF Analyzed 02/08/17

Ву Prep Date MG 02/01/17

Prep Batch OP63645

Analytical Batch **GNN877**

Initial Weight Final Volume 20.1 g

File ID

NN017362.D

2.0 ml

Run #1 Run #2

MAEPH List

CAS No.	Compound	Result	RL	MDL	Units
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics	ND ND ND	11000 11000 11000	8000 5300 5300	ug/kg ug/kg ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
3386-33-2 580-13-2 84-15-1 321-60-8	1-Chlorooctadecane 2-Bromonaphthalene o-Terphenyl 2-Fluorobiphenyl	68% 74% 67% 80%			-

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: B5SS-2 Lab Sample ID: FA40754-5 Matrix:

SO - Soil

MADEP VPH REV 1.1 BMSMC, Humacao, PR Date Sampled: 01/25/17 01/27/17 Date Received:

Percent Solids: 94.6

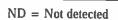
Project:

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 UV077770.D 1 02/01/17 AJC **GUV4135** n/a

Run #2

Method:

Initial Weight Final Volume 5.1 ml


Methanol Aliquot 100 ul

4.06 g

Run #1 Run #2

MADEP VPH List

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.)	ND ND ND	6900 6900 6900	2400 2400 2400	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
460-00-4 460-00-4	BFB BFB	96% 91%		70-13 70-13		منسدال

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

fael Infante Méndez LIC # 1888

Report of Analysis

Ву

MG

02/08/17

Prep Date

02/01/17

Page 1 of 1

Client Sample ID: B5SS-2

Lab Sample ID: Matrix:

FA40754-5

SO - Soil

Date Sampled: 01/25/17 Date Received:

01/27/17

Method:

MADEP EPH REV 1.1 SW846 3546

Percent Solids: 94.6

Project:

BMSMC, Humacao, PR

1

File ID DF Analyzed

Prep Batch **Analytical Batch** OP63645 **GNN877**

Run #1 Run #2

Run #1

Initial Weight

NN017363.D

Final Volume

20.7 g

2.0 ml

Run #2

MAEPH List

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics	ND ND ND	10000 10000 10000	7700 5100 5100	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
3386-33-2 580-13-2 84-15-1 321-60-8	1-Chlorooctadecane 2-Bromonaphthalene o-Terphenyl 2-Fluorobiphenyl	67% 73% 58% 80%	40-140% 40-140% 40-140% 40-140%			

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: EB-012517 Lab Sample ID:

FA40754-6

Matrix: Method: AQ - Equipment Blank

MADEP EPH REV 1.1 SW846 3510C

Date Sampled: 01/25/17 Date Received:

01/27/17

Percent Solids: n/a

Project:

BMSMC, Humacao, PR

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 NN017292.D 1 02/03/17 MG 01/31/17 OP63636 **GNN873**

Run #2

Initial Volume

Final Volume

Run #1 Run #2 800 ml

2.0 ml

MAEPH List

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics	ND ND ND	250 250 250	190 130 130	ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
3386-33-2 580-13-2 84-15-1 321-60-8	1-Chlorooctadecane 2-Bromonaphthalene o-Terphenyl 2-Fluorobiphenyl	47% 82% 74% 87%		40-1	40% 40% 40% 40%	2001

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

fuel Infante Méndez 1.IC. # 1888

Report of Analysis

Page 1 of 1

Client Sample ID: FB-012517 Lab Sample ID: FA40754-7

Matrix: Method:

AQ - Field Blank Soil MADEP VPH REV 1.1 BMSMC, Humacao, PR

Date Sampled: Date Received: 01/27/17

01/25/17

Percent Solids: n/a

File ID Run #1 UV077880.D DF Analyzed 1 02/07/17

Prep Date By AJC n/a

70-130%

Prep Batch n/a

Analytical Batch **GUV4141**

Run #2

Project:

Purge Volume Run #1 5.0 ml

Run #2

MADEP VPH List

CAS No. Compound Result RL MDL Units Q C5- C8 Aliphatics (Unadj.) ND 100 35 ug/l C9- C12 Aliphatics (Unadj.) ND 100 35 ug/l C9- C10 Aromatics (Unadj.) ND 100 35 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits

460-00-4 BFB 92% a 460-00-4 **BFB** 86% a

(a) Surrogate recoveries corrected for actual spike amount.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: FB-012517 Lab Sample ID:

FA40754-7

AQ - Field Blank Soil

Date Sampled: Date Received: 01/27/17

01/25/17

Matrix: Method:

MADEP EPH REV 1.1 SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Humacao, PR

Run #1 Run #2 File ID DF NN017293.D 1

Analyzed By 02/03/17 MG Prep Date 01/31/17

Prep Batch OP63636

Analytical Batch GNN873

Initial Volume 800 ml

Compound

Final Volume 2.0 ml

Run #1 Run #2

MAEPH List

CAS No.

Result RL MDL Units Q

C11-C22 Aromatics (Unadj.) ND 250 190 ug/l C9-C18 Aliphatics ND 250 130 ug/l C19-C36 Aliphatics ND 250 130 ug/l

CAS No. Surrogate Recoveries Run#1 Run#2 Limits

3386-33-2 1-Chlorooctadecane 45% 40-140% 580-13-2 2-Bromonaphthalene 77% 40-140% 84-15-1 o-Terphenyl 68% 40-140% 321-60-8 2-Fluorobiphenyl 83% 40-140%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Company Name Anderson Multipolitand & Associates Briefol-Mysers Squibs Manufacturing Ca., Surface Soil Bempling Breel Briefol-Mysers Squibs Manufacturing Ca., Surface Soil Bempling Breel Briefol-Mysers Squibs Manufacturing Ca., Surface Soil Bempling Breel Briefol-Mysers Cities Carpet Car	FL		dest committee	1403 Vineland TEL: 40	7-425-670	O FAX.	407-425-4	0707			- 17	1	Acous	ii Chote (067	ľ	maked him P			2.120
Commenter Name Number Comment	Client / Reporting Information		新地域60	Project	Informa	tion	e est	Alfred:	鄉	3/40	1786			Reg	uested	Analysis	(see TES	BT CODE	(sheet)	064	Matrix Code
Content of the Cont														1							DW - Drawing Wi
Section Commence	erson Multipliand & Associates	Bristol-Mysr	Squibb Manuf	acturing Co	Surle	ce Soll	Bamplin D-artir	g Contract	14 140	W77 19940	Tradition .	Part and	4								GW - Ground Wa
State Stat	Westchester Avenue, Builte 417				Mine	miormatic							7								SW - Surtable Wil SO - Soil
1987 1987 1987 1987 1988	State Zo	Cay		17.7	Compan	y Nema							7						1 1		SL-Studge SED-Bedimer
Terry Taylor				PR	Const le	-			_		_		-		1				1 1		OI - OB LIQ - Other Little
Section		Prosect			-											- 5			1 1		AR Ar SOL - Other So
### Proof of Proof of Terry Taylor Fact D / Point of Collection McDovin Val A Data Terry Taylor Terr		Clurit Purchase	Order E		Cay			34	efet.		25		1						1 1		WP-Wips
Field ID / Point of Coloction									_		_		4						1 1		FB-F-ext Blank EB-Equipment Bi
Field ID / Point of Collection NEOVCI Val.4 Data Trans Section Data	premis (Namera)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second		Attention	r.							\ ~	J							RB- Rinse Blan TB-Tro Blank
FTFSS-	1	Tenty Legion		Consisten	-		1		-	-	reed the	-									
2 FTF SS - 2 3 FTF SS - 3 1/25/17 1(105 TT SO 3 1 1 2 X X X Y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Field ID / Point of Collection	MECHONNIA	Date	Tem	Samples by			9	15 Med 23	MOME.	100	100	VARAV	BWAE							LAB USE ON
2 FTF SS - 2 3 FTF SS - 3 1/25/17 1(105 TT SO 3 1 1 2 X X X Y 1 1 2 X X X X	I FTFSS-1		1/25/17	1045	TT	50	3	П	П	TI	1	2	X	1×							
3	2 ETESS-2			1105	1	SO	7		П	10	1	,	×	×				1			
## 1			F 1.1	111111111111111111111111111111111111111		-	2	1	\Box		1	,11		1×			\top				
Sat. 15 Surious Days		1	V.5 1/2		70		2	1	Н		1	31	V	×		_	+	+	1	\top	
EB - 012517	1000		10510	.60.5		-	7	+	11		1	1	K	0	-		1	_			
Tumerquel Tree (Business days)	D 3 3	-	120117	1225	17		20	3	Н	-	+	4+	-	10	1	_	+	+	++	1	
Turnequel Tree (Business days) Sald. 15 Business Days Approved by (Insuler PSp: Deer Commercial "A" (Level 3)" NYASP Category 8 Sald. 16 Business Days (by Centract only) 19 Day MUSH Sales Portion Sales		-							Н	+	H	++	13	12	-	-	++	+	1		
Sale 15 Sustines Days Approved By (Associated PA): Description:	PB-0123/1		1/25/17	1496	11	(-15	4(1	9		+	H	#	1	^	\Box						
Stat. 15 Studiness Days Approved By (Associated PAC) Description		9.55			-			H	H		H	H	-	-	\vdash	+		-	-	+	
Stat. 15 Studiness Days Approved By (Associated PAC) Description					\vdash			\dagger	H	+	1	Ħ				\pm				\pm	Yes
Stat. 15 Studiness Days Approved by (Another PM; Deer Stat. 16 Studiness Days Sty Contract only Stat. 16 Studiness Days Sty Contract only 19 Day AUSA! State Parms 19 Day AUSA! State Parms 10 Day AMERICANCY Other 10 Day AMERICANCY	Turnersand Time (Business days)	PSS CATALOG	Militaria Misir	244,5816	F1-150	9.7	Dete	Debre		I		Ш	1	10.000	(158e-2	N. Tibber	Control	acts / Som	cial Instruction	95730	er i Carinhela
19 Day MUSH State Porms					$\overline{}$	Commerc	_		_			SP CAL							Practical Con-	- 4	1.
S DAY MUSH S DAY MUSH S DAY MUSH S DAY MUSH Commercial TO Commercial TO Results Day Commercial TO Results Day PANA											,				ON	y HP	A Fa	deple	- 14 C	7 2	rometri
□ 3 Day EMERGENCY □ 2 Day EMERGENCY □ Commercial "A" = Results Only □ 7 P. N. S.		-	7.0					41		-	, .				Cwc.	Lun	J.	- mul	to con	t un	Lundur
	3 Day EMENGENCY		100				clei C					-			_				-		
			-												AA	4.	_				
Employer & Roan TA data available VA Labbric 40 Summay - Parail Review and 40 Summay - Parail Review - Par													od Rew (MER.							
Bernole Custody must be documented below each time samples change possession. Including courier delivery. Continue C		54	mole Custody m	ust by docur	married 1	alow sac		umples	char	nga por							-	27.2	TOWN B	THE RE	100

FA40754: Chain of Custody Page 1 of 3

EXECUTIVE NARRATIVE

SDG No:

FA40754

Laboratory:

Accutest, Florida

Analysis:

MADEP VPH

Number of Samples:

6

Location:

BMSMC, Humacao, PR

Humacao, PR

SUMMARY:

Six (6) samples were analyzed for Volatiles TPHC Ranges by method MADEP VPH. Samples were validated following the METHOD FOR THE DETERMINATION OF VOLATILE PETROLEUM HYDROCARBONS (VPH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

- 1. The % difference in the continuing and ending calibration verification for the C5-C8 hydrocarbon range outside the method performance criteria. Results qualified as estimated (J or UJ) in affected samples.
- 2. MS/MSD % recovery and RPD within laboratory control limits except for the cases described in the Data Review Worksheet. MS/MSD results apply to the unspiked sample. Unspiked sample was from another job. No qualification performed based on MS/MSD.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

February 16, 2017

Date:

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: FA40754-1

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

METHOD: MADEP VPH

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	6100	ug/kg	1	-	U	Yes
Ç9 - C12 Aliphatics (Unadj.)	6100	ug/kg	1	-	U	Yes
Ç9 - C10 Aromatics (Unadj.)	6100	ug/kg	1	•	U	Yes

Sample ID: FA40754-2

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

METHOD: MADEP VPH

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	6500	ug/kg	1	-	U	Yes
Ç9 - C12 Aliphatics (Unadj.)	6500	ug/kg	1	-	U	Yes
Ç9 - C10 Aromatics (Unadj.)	6500	ug/kg	1		บ	Yes

Sample ID: FA40754-3

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2016

Matrix: Soil

METHOD: MADEP VPH

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	9000	ug/kg	1	-	U	Yes
Ç9 - C12 Aliphatics (Unadj.)	9000	ug/kg	1	-	U	Yes
Ç9 - C10 Aromatics (Unadj.)	9000	ug/kg	1	-	U	Yes

Sample ID: FA40754-4

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

METHOD: MADEP VPH

Analyte Name	Result	Units [Dilution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	5800	ug/kg	1	-	U	Yes
Ç9 - C12 Aliphatics (Unadj.)	5800	ug/kg	1	•	U	Yes
Ç9 - C10 Aromatics (Unadj.)	5800	ug/kg	1		U	Yes

Sample ID: FA40754-5

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

METHOD: MADEP VPH

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	6900	ug/kg	1	-	U	Yes
Ç9 - C12 Aliphatics (Unadj.)	6900	ug/kg	1	-	U	Yes
Ç9 - C10 Aromatics (Unadj.)	6900	ug/kg	1	-	U	Yes

Sample ID: FA40754-7

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: AQ - Field Blank Soil

METHOD: MADEP VPH

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	100	ug/L	1	-	UJ ⁰ √	Yes
Ç9 - C12 Aliphatics (Unadj.)	100	ug/L	1	-	U	Yes
Ç9 - C10 Aromatics (Unadj.)	100	ug/L	1		U	Yes

DATA REVIEW WORKSHEETS

Type of validation	n Full:X Limited:	Project Number: _FA40754 Date:01/25/2017 Shipping date:01/26/2017 EPA Region:2
REVIEW	OF VOLATILE PETROLI	EUM HYDROCARBON (VPHs) PACKAGE
actions. This docu informed decision assessed according METHOD FOR TH Massachusetts De validation guideling criteria and data	ment will assist the revieus of in better serving the good to the data validation guide DETERMINATION OF partment of Environmentes promulgated by the Use	e organics were created to delineate required validation ewer in using professional judgment to make more needs of the data users. The sample results were dance documents in the following order of precedence VOLATILE PETROLEUM HYDROCARBONS (VPH), al Protection, Revision 1.1 (2004). Also the general SEPA Hazardous Wastes Support Section. The QC in the data review worksheets are from the primary
The hardcopied (la received has been review for VOCs in	reviewed and the quality	LaboratoriesOrlando data package control and performance data summarized. The data
Lab. Project/SDG No. of Samples: Field blank No.: Equipment blank N Trip blank No.: Field duplicate No.:	lo.:FA40754 7 FA40754-7 o.:	Sample matrix:Soil
X Blanks X Surrogate	imes uning tandard Performance	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
OverallVolatiles_by_GC_	by_Method_MADEP_VPH,	,_REV_1.1
Definition of Qualific	ers:	
R- Rejected da UJ- Estimated n	not detected	

		Criteria we	All criteria were metx re not met and/or see below	<u></u>
l.	DATA COMPLETNE A. Data Packag			
MISS	ING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED	
В.	Other		Discrepanci	es:
<i>y</i>				
				<u>-</u>
	70			-
				2.3
			# 975 _8388##	

All criteria were met	X
Criteria were not met and/or see below _	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of extraction, and subsequently from the time of extraction to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE	DATE	DATE	ACTION			
	SAMPLED	EXTRACTED	ANALYZED				
Samples analyzed within method recommended holding time. Sample preservation							
within the required criteria.							

Criteria

Preservation:

Samples analyzed with ambient purge temperature: Samples must be acidified to a pH of 2.0 or less at the time of collection.

Samples analyzed with heated purge temperature: Samples must be treated to a pH of 11.0 or greater at the time of collection.

Methanol preservation of soil/sediment samples is mandatory. Methanol (purgeand-trap grade) must be added to the sample vial before or immediately after sample collection. In lieu of the in-field preservation of samples with methanol, soil samples may be obtained in specially-designed air tight sampling devices, provided that the samples are extruded and preserved in methanol within 48 hours of collection.

Holding times:

Aqueous samples using ambient or heated purge - analyze within 14 days. Soil/sediment samples - analysis within 28 days.

Cooler temperature (Criteria: 4 ± 2 °C):4.2°C	ooler temperatu	ıre (Criteria: 4 <u>+</u> 2 ºC):_	4.2°C
---	-----------------	-----------------------------------	-------

Actions: Qualify positive results/non-detects as follows:

If holding times are exceeded, estimate positive results (J) and nondetects (UJ).

If holding times are grossly exceeded, use professional judgment to qualify data. The data reviewer may choose to estimate positive results (J) and rejects nondetects (R).

If samples were not at the proper temperature (> 10°C) or improperly preserved, use professional judgment to qualify the results.

		С	All crit riteria were not met ar	eria were metX_ nd/or see below	
CALIBRAT	IONS VERIFIC	ATION			
			rument calibration are d maintaining accepta		
		Date of ir	nitial calibration:01	/13/17	
		Dates of	initial calibration verific	cation:01/13/17_	
		Instrume	nt ID numbers:	HP5890	
		Matrix/Le	vel:AQUEOUS/	MEDIUM	
DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED	
	1211		11. 5, 751. 55, 705, 1	7.11.20120	1
Initi	al and initial ca	libration verification	meet method specific	requirements	

Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be
 equal to or less than 25% over the working range for the analyte of interest. When
 this condition is met, linearity through the origin may be assumed, and the average
 calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range
 of interest. Calculate the collective CFs for C5-C8 Aliphatic Hydrocarbons and C9C12 Aliphatic Hydrocarbons using the FID chromatogram. Calculate the collective
 CF for the C9-C10 Aromatic Hydrocarbons using the PID chromatogram. Tabulate
 the summation of the peak areas of all components in that fraction against the total
 concentration injected. The %RSD of the calibration factor must be equal to or less
 than 25% over the working range for the hydrocarbon range of interest.

Criteria- CCAL

- At a minimum, the working calibration factor must be verified on each working day, after every 20 samples, and at the end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte. Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It should be noted that the %Ds are calculated when CFs are used for the initial calibration and

DATA REVIEW WORKSHEETS

percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects. If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	01/13/17
Dates of continuing calibration	on verification:01/31/17;_02/06/17
Dates of final calibration veri	ification:_01/31/17;_02/07/17
Instrument ID numbers:	HP5890
Matrix/Level:	AQUEOUS/MEDIUM

DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, <u>%D</u> , r	SAMPLES AFFECTED
02/06/17	cc4115-4	C5 – C8 Aliphatics	-29.6	FA40754-7
02/07/17	Cc4115-4	C5 – C8 Aliphatics	-24.9	
	<u> </u>			

Note: Continuing and final calibration verification meets method specific requirements except in the cases described in this document. The % difference for VPH in the C5-C8 aliphatic hydrocarbon retention time window in the continuing and ending calibration verification was outside the method performance criteria. Results are qualified as estimated in affected samples.

A separate worksheet should be filled for each initial curve

			Criteria were ne	All criteria were met ot met and/or see below	_X
VA. BLAN	K ANALYSIS R	ESULTS (Se	ections 1 & 2)		
of contamina associated w with any blad determine who problem is a	ation problems. ith the samples nks exist, all da nether or not the n isolated occu- after samples s	The criteria , including tr ata associate ere is an inh arrence not a	for evaluation of ip, equipment, and ip, equipment, and ip de with the case erent variability in affecting other date	ne the existence and magrif blanks apply only to be laboratory blanks. If prolongs be carefully evaluate the data for the case, or a. A Laboratory Method minated to determine if sa	blanks blems ted to if the Blank
List the contact separately.	amination in the	e blanks bel	ow. High and low	levels blanks must be tr	eated
Laboratory bl	anks				
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS	
_METHOD_E	BLANKS_MEET	_THE_METH	IOD_SPECIFIC_C	RITERIA	
Note:					_
<u>Field</u> /Trip/Eq	uipment				
A methanol to each soil/sed and analysis.	rip blank or acid iment sample o	dified reagen r water sam _l	t water trip blank ole batch, respecti	should continually accomvely, during sampling, sto	ipany rage,
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS	
_NO_TRIP/E	QUIPMENT_BL	ANKS_ASSO	OCIATED_WITH_1	HIS_DATA_PACKAGE	
_NO_TARGE	T_ANALYTES_	DETECTED	_IN_FIELD_BLAN	<_ANALYZED	
					<u> </u>
Note:					

V B. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

SAMPLE ID

All criteria were metX	
Criteria were not met and/or see below	

ACTION

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SURROGATE COMPOUND

2,3,4	-Trifluorotoluene	•		
_SURROGATE_STAN _LIMITSSURROGAT AMOUNT				
	7.			
QC Limits* (Aqueous)LL_to_UL QC Limits* (Solid)	_70_to_130_	to	to	
LL to UL	70 to 130	to	to	

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 70% or more than 130%, check calculations to locate possible errors, check the fortifying standard solution for degradation, and check changes in instrument performance.

If the cause cannot be determined, reanalyze the sample unless one of the following exceptions applies:

- (1) Obvious interference is present on the chromatogram (e.g., unresolved complex mixture);
- (2) Percent moisture of associated soil/sediment sample is >25% and surrogate recovery is >10%; or
- (3) The surrogate exhibits high recovery and associated target analytes or hydrocarbon ranges are not detected in sample.

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

All criteria were met _	_X
Criteria were not met and/or see below	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 70 130% of the true value. Lower recoveries of n-nonane are permissible (if included in the calibration of the C9-C12 aliphatic range), but must be noted in the narrative if <30%.</p>

MS/MSD Recoveries and Precision Criteria

Sample ID:_FA40755-4_MS/MSD_____ Matrix/Level:_Soil____

List the %Rs, RPD of the compounds which do not meet the QC criteria.

The QC reported here applies to the following samples:

Method: MADEP VPH REV 1.1

FA40754-3, FA40754-4, FA40754-5

Compound	FA4075 ug/kg	5-4 Q	Spike ug/kg	MS ug/kg	MS %	Spike ug/kg	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
C5- C8 Aliphatic	S		0 0	0 0		5 5	5 5			
(Unadj.)	ND		36100	21000	58*	36100	20800	58*	1	70-130/50
C9- C12 Aliphati	cs									
(Unadj.)	ND		30100	10000	33*	30100	9970	33*	0	70-130/50
C9- C10 Aromati	ics									
(Unadj.)	ND		18100	5490	30*	18100	5080	28*	8	70-130/50

^{*} Outside laboratory control limits.

Note: MS/MSD % recovery and RPD within laboratory control limits except for the cases described in this document. MS/MSD results apply to the unspiked sample. Unspiked sample was from another job. No qualification performed based on MS/MSD.

DATA REVIEW WORKSHEETS

No action is taken on MS/MSD results alone to qualify the entire case. However, used informed professional judgment, the data reviewer may use the MS/MSD results in conjunction with other QC criteria and determine the need for some qualification of the data. In those instances where it can be determined that the results of the MS/MSD affect only the sample spiked, the qualification should be limited to this sample alone. However, it may be determined through the MS/MSD results that the laboratory is having a systematic problem in the analysis of one or more analytes, which affects the associated samples.

2. MS/MSD – Unspiked Compounds

List the concentrations of the unspiked compounds and determine the % RSDs of these compounds in the unspiked sample, matrix spike, and matrix spike duplicate.

	CONCENTR	ATION				
COMPOUND	SAMPLE	MS	MSD	%RPD	ACTION	
	<u></u>					

Criteria: None specified, use %RSD ≤ 50 as professional judgment.

Actions:

If the % RSD > 50, qualify the results in the spiked sample as estimate (J). If the % RSD is not calculable (NC) due to nondetect value in the sample, MS, and/or MSD, use professional judgment to qualify sample data.

A separate worksheet should be used for each MS/MSD pair.

All criteria were metX	_
Criteria were not met and/or see below	

VIII. LABORATORY CONTROL SAMPLE (LCS/LCSD) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

List the %R of compounds which do not meet the criteria

LCS ID	COMPOUND	% R	QC LIMIT	ACTION				
LCS_RE	_LCS_RECOVERY_WITHIN_LABORATORY_CONTROL_LIMTS							
	11.00							

Criteria:

- Refer to QAPP for specific criteria.
- * The spike recovery must be between 70% and 130%. Lower recoveries of nnonane are permissible (if included in the calibration of the C9-C12 aliphatic range). If the recovery of n-nonane is <30%, note the nonconformance in the executive narrative.

Actions:

Actions on LCS recovery should be based on both the number of compounds that are outside the %R criteria and the magnitude of the excedance of the criteria.

If the %R of the analyte is > UL, qualify all positive results (j) for the affected analyte in the associated samples and accept nondetects.

If the %R of the analyte is < LL, qualify all positive results (j) and reject (R) nondetects for the affected analyte in the associated samples.

If more than half the compounds in the LCS are not within the required recovery criteria, qualify all positive results as (J) and reject nondetects (R) for all target analyte(s) in the associated samples.

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix (1 per 20 samples per matrix)? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected. Discuss the actions below:

		All criteria were metX Criteria were not met and/or see below	
IX.	FIELD/LABORATORY DUPLICATE	PRECISION	
Sampl	e IDs:FA40754-2/FA40754-2DUP_	Matrix:Soil	
precisi	on. These analyses measure both fie	taken and analyzed as an indication of overall Id and lab precision; therefore, the results may duplicates which measures only laborator	у

performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

COMPOUND SQL SAMPLE DUPLICATE RPD ACTION CONC.

Laboratory duplicate analyzed with this data package. RPD within laboratory and validation guidance document criteria (± 50 %) for analytes detected above reporting limits.

Criteria:

The project QAPP should be reviewed for project-specific information. RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples if results are \geq SQL. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

SQL = soil quantitation limit

Actions:

If both the sample and the duplicate results are nondetects (ND), the RPD is not calculable (NC). No action is needed.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.

If one sample result is not detected and the other is > 5x the SQL qualify (J/UJ).

Note: If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

All criteria were met _	_X
Criteria were not met and/or see below	

XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TICs).

- 1. Verify that the target analytes were within the retention time windows.
 - Retention time windows must be re-established for each Target VPH Analyte each time a new GC column is installed, and must be verified and/or adjusted on a daily basis.
 - o Coelution of the m- and p- xylene isomers is permissible.
 - All surrogates must be adequately resolved from individual Target Analytes included in the VPH Component Standard.
 - For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
 - The n-pentane (C5) and MtBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.

Note: Target analytes were within the retention time window.

2. If target analytes and/or TICs were not correctly identified, request that the laboratory resubmit the corrected data.

		(criteria were metX and/or see below			
XII.	QUANTITATIO	ON LIMITS AND SAMPLE	E RESULTS				
The sa	ample quantitati	on evaluation is to verify	laboratory quantitation	on results.			
1.	In the space b	elow, please show a min	imum of one sample	calculation:			
FID							
	uter printout						
Comp	ator printode						
PID							
Comp	uter printout						
2.	If requested, v (MDLs).	erify that the results were	e above the laborato	ry method detection limit			
3.	If dilutions performed, were the SQLs elevated accordingly by the laboratory? List the affected samples and dilution factor in the table below.						
S	AMPLE ID	DILUTION FACTOR	REASON F	OR DILUTION			
lf diluti results	on was not perf (J) for the affec	formed and the results wated compounds. List the	ere above the conce affected samples/co	entration range, estimate mpounds:			
113							

EXECUTIVE NARRATIVE

SDG No:

FA40754

Laboratory:

Accutest, Florida

Analysis:

MADEP EPH

Number of Samples:

7

Location:

BMSMC, Humacao, PR

Humacao, PR

SUMMARY:

Seven (7) samples were analyzed for Extractables TPHC Ranges by method MADEP EPH. Samples were validated following the METHOD FOR THE DETERMINATION OF EXTRACTABLE PETROLEUM HYDROCARBONS (EPH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. MS/MSD % recovery and RPD within laboratory control limits except for the cases described in the Data Review Worksheet. MS/MSD results apply to the unspiked sample. Unspiked sample was from another job. No

qualification performed based on MS/MSD.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

February 16, 2017

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: FA40754-1

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

METHOD: MADEP EPH

Analyte Name	Result	Units (Dilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	11000	ug/kg	1	-	U	Yes
Ç9 - C18 Aliphatics	11000	ug/kg	1	-	U	Yes
Ç19 - C36 Aliphatics	11000	ug/kg	1	-	U	Yes

Sample ID: FA40754-2

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

METHOD: MADEP EPH

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable	
Ç11 - C22 Aromatics (Unadj.)	10200	ug/kg	1	J	J	Yes	
Ç9 - C18 Aliphatics	6500	ug/kg	1	-	U	Yes	
Ç19 - C36 Aliphatics	19100	ug/kg	1	-	-	Yes	

Sample ID: FA40754-3

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2016

Matrix: Soil

METHOD: MADEP EPH

Analyte Name	Result	Units [Dilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	13600	ug/kg	1	-	-	Yes
Ç9 - C18 Aliphatics	10000	ug/kg	1	-	U	Yes
Ç19 - C36 Aliphatics	10000	ug/kg	1	-	U	Yes

Sample ID: FA40754-4

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

METHOD: MADEP EPH

Analyte Name	Result	Units D	Dilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	11000	ug/kg	1	-	U	Yes
Ç9 - C18 Aliphatics	11000	ug/kg	1	-	U	Yes
Ç19 - C36 Aliphatics	11000	ug/kg	1	_	U	Yes

Sample ID: FA40754-5

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

METHOD: MADEP EPH

Analyte Name	Result	Units [Dilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	10000	ug/kg	1	-	U	Yes
Ç9 - C18 Aliphatics	10000	ug/kg	1	-	U	Yes
Ç19 - C36 Aliphatics	10000	ug/kg	1	-	U	Yes

Sample ID: FA40754-6

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: AQ - Equipment Blank

METHOD: MADEP EPH

Analyte Name	Result	Units D	Dilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	250	ug/L	1	-	U	Yes
Ç9 - C18 Aliphatics	250	ug/L	1	42	U	Yes
Ç19 - C36 Aliphatics	250	ug/L	1		U	Yes

Sample ID: FA40754-7

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: AQ - Field Blank Soil

METHOD: MADEP EPH

Analyte Name	Result	Units [Dilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	250	ug/L	1	-	U	Yes
Ç9 - C18 Aliphatics	250	ug/L	1	-	U	Yes
Ç19 - C36 Aliphatics	250	ug/L	1	1.5	U	Yes

Type of validation	Full:X Limited:	Project Number:_FA40754 Date:01/25/20 Shipping date:01/26/201 EPA Region:2	17 7
REVIEW OF EXT	RACTABLE PETROLI	EUM HYDROCARBON (EPI	Hs) PACKAGE
validation actions. This more informed decisio were assessed accord precedence METHOD HYDROCARBONS (EF (2004). Also the gene Support Section. The Common section is a section of the common section of the common section is a section of the common section.	document will assist the nand in better serving ling to the data validation FOR THE DETER! PH), Massachusetts Depral validation guidelines	ile organics were created to a reviewer in using professiona the needs of the data users. On guidance documents in the MINATION OF EXTRACTABE artment of Environmental Professional promulgated by the USEPA lation actions listed on the data is otherwise noted.	I judgment to make The sample results e following order of BLE PETROLEUM ection, Revision 1.1 Hazardous Wastes
	been reviewed and the o	est_LaboratoriesOrlando quality control and performance	
Equipment blank No.: _ Trip blank No.:	_7 _FA40754-7 _FA40754-6	Sample matrix:	
X Data CompleX Holding TimeN/A GC/MS TuninN/A Internal StandX BlanksX Surrogate ReX Matrix Spike/	s g Jard Performance	X Laboratory Control SX Field DuplicatesX CalibrationsX Compound IdentificaX Compound QuantitatX Quantitation Limits	tions
Overall _Extractable_Petroleur	m_Hydrocarbons_by_GC	_by_Method_MADEP_EPH,_F	Comments:
-	(1000)000000000000000000000000000000000		
Definition of Qualifiers:			
J- Estimated result U- Compound not R- Rejected data UJ- Estimated none Reviewer:	detected		
Date:February_1	6,_2017		

	Criteria were no	All criteria were metx ot met and/or see below
I. DATA COMPLETNES A. Data Package:		
MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
	7000	
B. Other		Discrepancies:
<u> </u>		
338		
	0 10 10 10 10 10 10 10 10 10 10 10 10 10	- 100 to

All criteria were met	_X
Criteria were not met and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of extraction, and subsequently from the time of extraction to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	ACTION
Samples	extracted and ar	lalvzed within met	thod recommended	l holding time
				Thoramy time
		+		

<u>Criteria</u>

Preservation:

Aqueous samples must be acidified to a pH of 2.0 or less at the time of collection.

Soil samples must be cooled at 4 ± 2 °C immediately after collection.

Holding times:

Samples must be extracted within 14 days of collection, and analyzed within 40 days of extraction.

Cooler temperature (Criteria: 4 ± 2 °C): ___4.2°C____

Actions: Qualify positive results/nondetects as follows:

If holding times are exceeded, estimate positive results (J) and nondetects (UJ). If holding times are grossly exceeded, use professional judgment to qualify data. The data reviewer may choose to estimate positive results (J) and rejects nondetects (R). If samples were not at the proper temperature (> 10°C) or improperly preserved, use professional judgment to qualify the results.

		Criter	All crite ia were not met and/or	ria were metX
CALIBRA	TIONS VERIFIC	CATION		
Compliand ensure the quantitativ	at the instrun	s for satisfactory i nent is capable of	nstrument calibration producing and ma	are established to intaining acceptable
Da	te of initial calib	ration:10/29	9/16	
Da	tes of initial cali	bration verification:_	10/29/16	
Ins	trument ID num	bers:FID_	7	
Ma	trix/Level:	_AQUEOUS/MEDIUI	M	
DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED
		10.0		
	initial and conti	nuing calibration med	et method specific req	uirements

Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be equal to or less than 25% over the working range for the analyte of interest.
 When this condition is met, linearity through the origin may be assumed, and the average calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range of interest. Calculate the collective CFs for C9-C18 Aliphatic Hydrocarbons, C19-C36 Aliphatic Hydrocarbons, and C11-C22 Aromatic Hydrocarbons using the FID chromatogram. Tabulate the summation of the peak areas of all components in that fraction against the total concentration injected. The %RSD of the calibration factor must be equal to or less than 25% over the working range for the hydrocarbon range of interest.
 - o The area for the surrogates must be subtracted from the area summation of the range in which they elute.
 - The areas associated with naphthalene and 2-methylnaphthalene in the aliphatic range standard must be subtracted from the uncorrected collective C9-C18 Aliphatic Hydrocarbon range area prior to calculating the CF.

Criteria- CCAL

- At a minimum, the working calibration factor must be verified on each working day, after every 20 samples or every 24 hours (whichever is more frequent), and at the end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte. Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It should be noted that the %Ds are calculated when CFs are used for the initial calibration and percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects. If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initi	ial calibration:		_10/29/16	
Dates of co	ontinuing calibrati	ion verification:	_02/02/17;_02/08/17;_0	2/10/17
Dates of fin	al calibration ver	rification:02/02/1	7;_02/08/17;_02/10/17_	······································
Instrument	ID numbers:	FID-7		
Matrix/Leve	el:AQUEO	US/MEDIUM		
DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D,	SAMPLES AFFECTED
llr	nitial and continu	ing calibration mee	ets method specific requi	rements.

Note:

A separate worksheet should be filled for each initial curve.

				met and/or see below
VA. BLANK	CANALYSIS R	ESULTS (Se	ctions 1 & 2)	
magnitude of oblanks associated problems with evaluated to case, or if the Method Blank	contamination ated with the s any blanks e letermine whet problem is an	problems. The camples, inclued a camples, inclued a cample a cample a cample after sample	e criteria for evaluding trip, equipma associated with ere is an inherent currence not affects suspected of the	etermine the existence and uation of blanks apply only to ent, and laboratory blanks. If the case must be carefully a variability in the data for the ting other data. A Laboratory being highly contaminated to
List the containseparately.	mination in the	blanks belov	w. High and low l	evels blanks must be treated
Laboratory bla	inks			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
METHOD_E	BLANKS_MEE	T_THE_MET	HOD_SPECIFIC_	CRITERIA.
Note: <u>Field</u> /Trip/ <u>Equ</u>	<u>uipment</u>			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_NO_TARGE	T_ANĀLYTES_	_DETECTED	_IN_FIĒLD/EQUII	HIS_DATA_PACKAGE PMENT_BLANK

All criteria were met _	_X
Criteria were not met and/or see below	

V B. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

All criteria were met _	_X
Criteria were not met and/or see below	

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID	SURROGATE COMPOUND				ACTION	
	S1	S2	S3	S4		
_SURROGATE_STANDARDS_RECOVERIES_WITHIN_LABORATORY_CONTROL_ _LIMITS				TORY_CONTROL		
SECURIOR SECURITY -						
			20. 30. 67.0			

Note:

```
S1 = o-Terphenyl 40-140% S2 = 2-Fluorobiphenyl 40-140% S3 = 1-Chlorooctadecane 40-140% S4 = 2-Bromonaphthalene 40-140% QC Limits (%)* (Aqueous)
_LL_to_UL    _40_to_140    _40_to_140
```

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 40% or more than 140%, check calculations to locate possible errors, check the fortifying standard solution for degradation, and check changes in instrument performance.

If the cause cannot be determined, reanalyze the sample unless one of the following exceptions applies:

- (1) Obvious interference is present on the chromatogram (e.g., unresolved complex mixture);
- (2) The surrogate exhibits high recovery and associated target analytes or hydrocarbon ranges are not detected in sample.

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

All criteria were met _X	_
Criteria were not met and/or see below	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 40 140% of the true value. Lower recoveries of n-nonane are permissible but must be noted in the narrative if <30%.</p>

MS/MSD Recov	eries and Precision Criteri	а			
Sample ID:_FA4	10755-4_MS/MSD			Matrix/Level:	Soil
List the %Rs, RI	PD of the compounds which	ch do no	t meet t	he QC criteria.	
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
_MSD	_C9C18_Aliphatics	36		40-140/50	No_action_
				-	

Note: No action taken. MS/MSD results apply to unspiked sample. Unspiked sample was from another job.

		C	riteria were	All criteria v	vere metX see below
No action is taken nformed profession conjunction with other data. In those instraction with earn affect only the same lowever, it may be a systematic problems of the samples of the samp	nal judgment, ther QC criteria a ances where it apple spiked, the determined through in the ana	ne data and deter can be d qualifica ough the l	reviewer name the reduced the reduced the reviewer name the reduced the reviewer name the reduced name the r	nay use the MS need for some que that the results be limited to the esults that the lab	/MSD results in ualification of the of the MS/MSD is sample alone. oratory is having
2. MS/MSD - U	Unspiked Compo	ounds			
List the concentration					
COMPOUND	CONCENTR/ SAMPLE	ATION MS	MSD	%RPD	ACTION
		-			
		-			
		<u></u>			
				72	

Criteria: None specified, use %RSD ≤ 50 as professional judgment.

Actions:

If the % RSD > 50, qualify the results in the spiked sample as estimate (J). If the % RSD is not calculable (NC) due to nondetect value in the sample, MS, and/or MSD, use professional judgment to qualify sample data.

A separate worksheet should be used for each MS/MSD pair.

affected. Discuss the actions below:

the effect and qualify data accordingly. Discuss any actions below and list the samples

DATA	KEVIEW	WORKSHEETS				
			Crit	All eria were not me	criteria were me and/or see belo	
	VIII.	LABORATORY C	ONTROL SAM	MPLE (LCS/LCSD) ANALYSIS	
matric		data is generated to	determine acc	curacy of the ana	lytical method fo	r various
	1.	LCS Recoveries (Criteria			
		List the %R of cor	npounds which	n do not meet the	criteria	
LCS II	D	COMPOUND	% R	QC LIMIT	ACTION	
LCS	S_REC	OVERY_WITHIN_L	ABORATORY	_CONTROL_LIM	ITS	
	Note:					
	Criter * *	ia: Refer to QAPP for The spike recover n-nonane are per nonconformance must be < 25%.	ry must be beto missible. If the	ween 40% and 14 recovery of n-n	onane is <30%,	note the
		ns on LCS recovery				
the as If the for the If more qualify	sociate %R of affecte than all pos	the analyte is > UL ed samples and acce the analyte is < LL, ed analyte in the ase half the compounds sitive results as (J) amples.	ept nondetects , qualify all pos sociated samp in the LCS ar	s. sitive results (j) a les. e not within the r	and reject (R) no	ondetects y criteria,
2.	Frequ	ency Criteria:				
per ma	atrix)?	analyzed at the req <u>Yes</u> or No. a may be affected.	•			-

		Cr	iteria were no	All criteria were met ot met and/or see below _	X
IX.	FIELD	LABORATORY DUPLICATE P	RECISION		
		FA40651-1/FA40651-1DUP FA40754-1/FA40754-1DUP		Matrix:Aqueous Matrix:Soil	-

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which measures only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION	
Laboratory dur	l blicates and	alyzed with this da	ta package. RPD wit	hin labo	ratory and	
generally acceptable control limits						

Criteria:

The project QAPP should be reviewed for project-specific information. RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples if results are \geq SQL. If both samples and duplicate are \leq 5 SQL, the RPD criteria is doubled.

SQL = soil quantitation limit

Actions:

If both the sample and the duplicate results are nondetects (ND), the RPD is not calculable (NC). No action is needed.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.

If one sample result is not detected and the other is $\geq 5x$ the SQL qualify (J/UJ).

Note: If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

All criteria were met _	_X
Criteria were not met and/or see below	

XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TICs).

- 1. Verify that the target analytes were within the retention time windows.
 - Retention time windows must be re-established for each Target EPH
 Analyte each time a new GC column is installed, and must be verified and/or adjusted on a daily basis.
 - The n-nonane (n-C9) peak must be adequately resolved from the solvent front of the chromatographic run.
 - o All surrogates must be adequately resolved from the Aliphatic Hydrocarbon and Aromatic Hydrocarbon standards.
 - For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
 - The n-pentane (C5) and MtBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.
- 1a. Aliphatic hydrocarbons range:
 - o Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for n-C9 and 0.01 minutes before the Rt for n-C19.
 - o Determine the total area count for all peaks eluting 0.01 minutes before the Rt for n-C19 and 0.1 minutes after the Rt for n-C36.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

- 1b. Aromatic hydrocarbons range:
 - Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for naphthalene and 0.1 minutes after the Rt for benzo(g,h,i)perylene.
 - Determine the peak area count for the sample surrogate (OTP) and fractionation surrogate(s). Subtract these values from the collective area count value.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

	All criteria were metX Criteria were not met and/or see below
2.	If target analytes and/or TICs were not correctly identified, request that the laboratory resubmit the corrected data.
3.	Breakthrough determination - Each sample (field and QC sample) must be evaluated for potential breakthrough on a sample specific basis by evaluating the % recovery of the fractionation surrogate (2-bromonaphthalene) and on a batch basis by quantifying naphthalene and 2-methylnaphthalene in both the aliphatic and aromatic fractions of the LCS and LCSD. If either the concentration of naphthalene or 2-methylnaphthalene in the aliphatic fraction exceeds 5% of the total concentration for naphthalene or 2-methylnaphthalene in the LCS or LCSD, fractionation must be repeated on all archived batch extracts.
	NOTE: The total concentration of naphthalene or 2-methylnaphthalene in the LCS/LCSD pair includes the summation of the concentration detected in the aliphatic fraction and the concentration detected in the aromatic fraction.
	Comments:Concentration_in_the_aliphatic_fraction_<_5%_of_the_totalconcentration_for_naphthalene_and_2-methylnaphthalene
4.	Fractionation Check Standard – A fractionation check solution is prepared containing 14 alkanes and 17 PAHs at a nominal concentration of 200 ng/µl of each constituent. The Fractionation Check Solution must be used to evaluate the fractionation efficiency of each new lot of silica gel/cartridges, and establish the optimum hexane volume required to efficiently elute aliphatic hydrocarbons while not allowing significant aromatic hydrocarbon breakthrough. For each analyte contained in the fractionation check solution, excluding n-nonane, the Percent Recovery must be between 40 and 140%. A 30% Recovery is acceptable for n-nonane.

Is a fractionation check standard analyzed?

Comments: Not applicable.

Yes? or No?

	All criteria were met _	_X
Criteria were	not met and/or see below	

XII. QUANTITATION LIMITS AND SAMPLE RESULTS

The sample quantitation evaluation is to verify laboratory quantitation results.

In order to demonstrate the absence of aliphatic mass discrimination, the response ratio of C28 to C20 must be at least 0.85. If <0.85, this nonconformance must be noted in the laboratory case narrative.

The chromatograms of Continuing Calibration Standards for aromatics must be reviewed to ensure that there are no obvious signs of mass discrimination.

Is aliphatic mass discrimination observed in the sample?

Yes? or No?

Is aromatic mass discrimination observed in the sample?

Yes? or No?

1. In the space below, please show a minimum of one sample calculation:

FA40754-2 EPH (C19 – C36, Aliphatcs)

 $RF = 1.074 \times 10^6$

FID

 $[] = 182835695/1.074 \times 10^6$

= 170.2 ppm Ok

- 2. If requested, verify that the results were above the laboratory method detection limit (MDLs).
- 3. If dilutions performed, were the SQLs elevated accordingly by the laboratory? List the affected samples and dilution factor in the table below.

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
4000		

If dilution was not performed, affected samples/compounds:	 affected c	compounds.	List the